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Abstract

The time-dependent diffusion of 3He atoms perpendicular to the axis of a single macroscopically large cylindrical pore is studied

using a steady (or constant) gradient-recalled echo sequence. Measurements of the effective 3He diffusion coefficient extending from

the free-diffusion regime to the motionally averaged regime are presented, and are well-described by analytic solutions to the Bloch–

Torrey equation based on the gaussian phase approximation. Our data yield the value 0.140(6)m2/s for the self diffusion coefficient

of 3He at a temperature of 296K and a pressure of 1.00 Torr. Adaptations of these methods should enable the study of complex pore

geometries as model systems.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Hahn’s 1950 treatment of the spin echo problem [1]

established the framework for an entire class of ex-

periments that provide robust and versatile probes of

diffusion phenomena [2–5]. Modern applications range

from non-invasive measurements of the diffusivity of
water and metabolites in tissues [6] and gases in lungs

[7] to the characterization of transport phenomena in

hydrocarbon-bearing reservoir rocks and other porous

media [8–10]. A significant number of these applica-

tions involve ‘bounded’ or ‘restricted’ diffusion, in

which random translational motions are strongly in-

fluenced (impeded) by physical or structural barriers

[11]. Accurate determinations of pore morphology
from experiments that probe restricted diffusion ulti-

mately rely on the precision of underlying theories and

the assumptions upon which they are based. It is thus

noteworthy that data from systematic studies of

NMR-detected restricted diffusion within well-defined

(i.e., model) geometries are sparse.
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Although real pore systems tend to be polydisperse

and polymorphic, it is both instructive and important to

study realizations of simple one-, two-, and three-di-

mensional restrictions: parallel plates of infinite extent,

cylinders of infinite length, and spherical volumes, re-

spectively. A variety of NMR-based techniques have

previously been used to study the diffusion of liquids
and dense gases between arrays of closely spaced par-

allel plates [4,12–15], within arrays of small rectangular

channels [16], within thin films (‘slabs’) of fluid confined

by parallel plates [17,18], and within long narrow cy-

lindrical tubes [19]. These experiments employ liquids

and dense gases diffusing in pores with characteristic

dimensions of order 100 lm, and typically probe a range

of diffusion length scales that span the unrestricted- and
restricted-diffusion limits.

Here, we report the results of a study that probes

the diffusive motion of a low pressure gas confined to a

single finite-length cylindrical pore with non-relaxing

walls and dimensions of order several centimeters. By

directing NMR field gradients perpendicular to the

axis of the cylinder our experiment probes random

translational motions that are restricted in two di-
mensions; the end-walls of the cylinder effectively act
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as perfect reflecting boundaries and allow us to treat
the cylinder as if it were infinite in extent. By varying

the magnitude of these field gradients and their time of

application we probe a range of motions that extend

from the free-diffusion to the motionally averaged re-

gimes.

A clear advantage to working with macroscopi-

cally large model pores rather than microscopic sys-

tems is the potential for studying diffusion in
complex yet well-defined geometries. One of our

goals here is thus to demonstrate that a reasonable

range of parameter space can be accessed with the

methods we describe. At the same time we have ta-

ken the opportunity to perform an experiment that

explores a range of diffusion length scales that has

not been previously examined for cylindrical geome-

tries. In this context we observe excellent agreement
between our data and an oft-cited yet only indirectly

tested theoretical model based on the gaussian phase

approximation [20].

Finally, we employ what is in effect a constant

field gradient (i.e., Carr–Purcell based [2]) approach

to the measurement of time-dependent diffusion co-

efficients. While this is a departure from the meth-

odology used for the majority of modern NMR-based
measurements of diffusion, which derive from the

short gradient-pulse methods of Stejskal and Tanner

[4], it is not intrinsic to the experiment we describe.

One could view our experiments as encompassing the

extreme limit of a finite-width pulsed-gradient exper-

iment in which the pulse width is equal to the dif-

fusion time. This is a limit that is of interest in its

own right in the context of trying to understand the
breakdown of the short gradient pulse approximation

[18,21–23]. We begin by outlining a number of issues

and equations that are relevant to NMR-based

studies of restricted diffusion in the constant gradient

limit.
2. Background

Unrestricted diffusion in a constant and uniform

magnetic field gradient of amplitude g leads to an at-

tenuation of the Hahn spin-echo amplitude at time 2s
that is given by1

M g; sð Þ ¼ exp

�
� 2

D0c
2g2s3

�
; ð1Þ
M 0; sð Þ 3

1 Echo-attenuation factors suitable for application to variations of

the basic Hahn echo experiment can be found in textbooks on

magnetic resonance [9,11]. The work reported here makes use of a

constant gradient-recalled echo sequence for which Eq. (1) is appro-

priate.
where M is the average transverse magnetization den-
sity, c is the gyromagnetic ratio of the diffusing spins,

and D0 is the free or unrestricted diffusion coefficient. It

is often argued that Eq. (1) remains valid within re-

stricted geometries, as long as the characteristic length

scale for diffusion ‘d ¼
ffiffiffiffiffiffiffiffi
D0s

p
along the field gradient

during the measurement period s remains small com-

pared to the characteristic size ‘s of the confining pore

or structure. Some care must be exercised in the selec-
tion of an absolute value for ‘s, particularly if com-

parisons between experiments involving restrictions in

different dimensions are to be made. To first approxi-

mation one expects ‘s to represent an appropriately

averaged geometric length scale related to the surface

area-to-volume ratio or the mean curvature of the pore

space, as discussed by de Swiet and Sen [30]. This is an

issue that we revisit in the context of our data analysis
in Section 4.

As early as 1962 Woessner [24] noted that in-

creasing the measurement time, such that ‘d becomes

comparable to or greater than ‘s, leads to an effective

suppression of the diffusion coefficient. Shortly there-

after, Wayne and Cotts [12] published the first sys-

tematic investigation of this effect in a well-defined

geometry. They used constant gradient spin-echo
techniques to study the diffusion of high-pressure

methane gas confined between a series of closely

spaced parallel plates. When the field gradient was

directed normal to the plates they observed a decrease

in the echo attenuation factor (Eq. (1)) that was

consistent with a numerical solution to an approxi-

mation of the Bloch equations as modified by Torrey

[25,26] to include a diffusion term. They recognized
this apparent suppression of the diffusion coefficient as

being due to the effects of motional averaging, and

observed that once spins were allowed to diffuse dis-

tances large compared to pore dimensions (i.e.,

‘d � ‘s) the echo-attenuation factor becomes a simple

exponential decay. By considering the spectral density

of field fluctuations encountered by diffusing spins

Wayne and Cotts demonstrated that in the motionally
averaged limit

M g; sð Þ
M 0; sð Þ ¼ exp

�
� bc2g2‘4s 2s

D0

�
; ð2Þ

where b ¼ b1 ¼ 2=15 and ‘s ¼ a=2 for diffusion per-

pendicular to a series of infinite reflecting planes sepa-

rated by a distance a.2

Motivated by Cotts, Robertson [27] undertook the

first detailed theoretical treatment of the restricted dif-

fusion problem. His approximate analytic solution to

the Bloch–Torrey equations led to the expression
2 The subscript ‘1’ associated with the parameter b indicates that

the value 2/15 is appropriate for a one-dimensional restriction. Two-

and three-dimensional restrictions are discussed later.
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2s

0
@ �
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Fig. 1. Spin-echo attenuation factors exhibit three limiting types of

behavior as summarized in this figure, which has been adapted from

reference [14]. The parameters ‘s, ‘d, and ‘g correspond to character-

istic structural, diffusion, and dephasing length scales as described in

the text. Boundaries between the various regimes are not sharp, and

have not been fully characterized [28]. The hatched region indicates the

range of parameter space explored as part of the present investigation,

while the dotted line represents our estimate of the boundary between

the intermediate and localization regimes as described in Section 3.
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for the infinite parallel reflecting-plane geometry. This

result is indistinguishable from the numerical calculation

that was performed by Wayne and Cotts. It reduces to

Eq. (1) for ‘d � ‘s and to Eq. (2) for ‘d � ‘s.
Underlying Robertson’s derivation of Eq. (3) is an

important set of constraints related to the strength of the

applied field gradients.3 These constraints are conve-

niently described in terms of the dephasing length

‘g ¼ ðD0=cgÞ
1
3 characteristic of the average distance that

a spin must diffuse in order to dephase by 2p radians

with respect to a stationary spin. H€urlimann et al. [14]

provide an excellent discussion of the interplay that
occurs between the three length scales that are relevant

to this problem: ‘s, ‘d, and ‘g. Fig. 1 summarizes the

dependence of spin-echo attenuation factors on the rel-

ative sizes of these various length scales.
3 Wayne and Cotts invoked the same approximation in carrying

out their numerical solution of the Bloch equations.
Robertson noted that Eq. (3) should be rigorously
valid for short measurement times such that ‘d � ‘s and
‘d � ‘g. In principle this corresponds to the free-diffu-

sion regime identified by H€urlimann et al. [14] and

shown in Fig. 1 (i.e., the regime in which ‘d is the

smallest length scale). In practical terms, it should be

noted that this is the limit in which Eq. (3) reduces to

Eq. (1), which can be written in the form

M g; sð Þ
M 0; sð Þ ¼ exp

"
� 2

3

‘d
‘g

� �6
#
; ð4Þ

and thus ‘g cannot be made substantially larger than ‘d
without effectively destroying the experimental signature

of the diffusion process. In otherwords, the ‘free diffusion’

regime identified in Fig. 1 is largely inaccessible to ex-

periments that rely on constant gradient techniques; in-

stead these experiments probe the (poorly understood)
intermediate regime between the free-diffusion and lo-

calization regimes. Robertson also concluded that Eq. (3)

should be valid for arbitrary times as long as ‘g > ‘s (the
motional averaging regime, in which ‘s is the smallest

length scale in the problem), although he was unable to

quantify the exact nature of the breakdown of this con-

straint in the vicinity of ‘g � ‘s. Wayne and Cotts’ nu-

merical solution of the Bloch equations and their
derivation of Eq. (2) were subject to the same constraint.

In 1973, Neuman [20] reformulated the restricted

diffusion problem in terms of the random accumulation
of phase [29]. With the assumption that the distribution

of phase changes is gaussian he was able to reproduce

Eq. (3). The validity of this assumption is difficult to

assess for complex geometries.4 However, it is clear that
when ‘g is the smallest length scale in the problem the

phase distribution deviates strongly from a gaussian and

the spin echo envelope becomes an exponential with a

rate that is proportional to g2=3 [30,33] rather than g2.
H€urlimann et al. [14] refer to this as the localization

regime, and were the first to provide a clear experimental

demonstration of its existence.

Neumanwentontoderiveexpressionsanalogous toEq.
(3) for spins confined to cylindrical and spherical volumes

with perfectly reflecting boundaries [20]. For a constant

and uniform magnetic field gradient directed perpendic-
4 It is expected to be rigorously valid for the motionally averaged

and free diffusion regimes [20,30], but not necessarily valid in the

intermediate regime. Further discussion of this issue can be found in

references [31] and [32].
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ular to the axis of a confining cylinder of radius R the at-
tenuation of the Hahn spin echo amplitude is given by

M g;sð Þ
M 0;sð Þ ¼ exp

"
�2c2g2

D0

X1
n¼1

a�4
n

a2nR
2�1

� 2s

�
�
3�4exp �a2nD0s

� �
þ exp �a2nD02s

� �
a2nD0

�#
;

ð5Þ
where an is the nth root of J 0

1ðanRÞ, while for a sphere of
radius R the corresponding expression is

M g; sð Þ
M 0; sð Þ ¼ exp

"
� 2c2g2

D0

X1
n¼1

j�4
n

j2
nR

2 � 2

� 2s

�
�
3� 4 exp � j2

nD0s
� �

þ exp j2
nD02s

� �
j2
nD0

�#
;

ð6Þ

where jn is the nth root of jnRJ 0
3=2ðjnRÞ � 1

2
J3=2ðjnRÞ ¼0.

Eqs. (5) and (6) both reduce to Eq. (1) in the free dif-

fusion regime and to Eq. (2) in the motionally averaged

regime, with b ¼ b2 ¼ 7=96 for the cylinder,5 b ¼ b3 ¼
8=175 for the sphere,6 and ‘s ¼ R in both cases.7

Eqs. (3), (5), and (6) define the canonical forms of the

Hahn spin echo amplitude for simple restricted diffusion

in one, two and three dimensions8 as long as the locali-
Deff ¼
12a4

p6D0s3
X1
n¼0

1

2nþ 1ð Þ6
2s

0
@ �

3� 4 exp � D0 2nþð
h

5 Neuman’s oft-cited manuscript contains a typographical error

that does not appear to have been previously documented. We have

repeated his calculations and find that numerical prefactor 7=296

appearing in Eq. (28) of reference [20] should read 7=96.
6 Further discussion regarding the nature of the irreversible loss of

spin coherence due to diffusion in a spherical container can be found in

references [34] and [35].
7 McGregor later used techniques similar to those first employed by

Wayne andCotts to derive expressions for the transverse relaxation time

T2 of a gas of polarized 3He atoms diffusing in a magnetic field gradient

[37]. His results, which are pertinent to the motional averaging regime,

are effectively identical to those presented by Neuman as far as the

irreversible loss of coherence due to translational diffusion is concerned.
8 Under more general conditions, where spins are free to diffuse

within an arbitrary bounded (although not necessarily connected) pore

space with reflecting boundaries the Hahn spin-echo amplitude is given

by

M g; sð Þ
M 0; sð Þ ¼ exp

"
� 2

3

‘d
‘g

� �6

1

�
� 3a

d
S
V
‘d þ # ‘2d

� ��
þ #

‘13d
‘12g

S
V

 !#
;

ð7Þ

where a ¼ 32ð2
ffiffiffi
2

p
� 1Þ=105

ffiffiffi
p

p
� 0:3144 . . ., S=V is the pore space

surface-area-to-volume ratio, and d is the number of dimensions in

which the motion is restricted. Eq. (7) was first derived by Helmer et al.

[13] using the methods of de Swiet and Sen [30] to expand around the

gaussian phase approximation at short echo times; it is only valid

outside of the localization regime.
zation regime is avoided. Of these, only Eq. (3)
(corresponding to the slab, or one-dimensional ge-

ometry) has been directly tested with constant gra-

dient techniques over a continuous range of diffusion

length scales spanning the unrestricted- and restrict-

ed-diffusion limits [12]. The work of Bohler and

McGregor [36,37] with cylindrical cells and the work

of Barb�e et al. [38] and later Cates et al. [39] with

spherical cells effectively test the motionally averaged
limits of Eqs. (5) and (6), respectively, but do not

probe the unrestricted-diffusion limit. Our experi-

ments with low-pressure 3He gas provide a direct test

of Eq. (5) (cylindrical, or prototypical two-dimen-

sional restriction) that extend from the free-diffusion

regime to the motionally averaged regime, all-the-

while avoiding the problematic localization regime.

The latter point is significant as it is now clear that
Wayne and Cott’s well-known study of restricted

diffusion was at least partially performed in the lo-

calization regime [14].

Before proceeding, we note that a convenient way

of describing data from restricted diffusion experi-

ments is to introduce an effective time-dependent dif-

fusion coefficient Deff . Following Wayne and Cotts,

Eqs. (3), (5), and (6) can be formally expressed in
terms of Eq. (1) by defining
1Þ2p2s=a2
i
þ exp � D0 2nþ 1ð Þ2p22s=a2

h i
D0 2nþ 1ð Þ2p2=a2

1
A ð8Þ
for diffusion normal to infinite reflecting planes sepa-

rated by a distance a,

Deff ¼
3

D0s3
X1
n¼1

a�4
n

a2nR
2 � 1

2s

�

�
3� 4 exp � a2nD0s

� �
þ exp � a2nD02s

� �
a2nD0

�
ð9Þ

for diffusion perpendicular to the axis of an infinite re-

flecting cylinder of radius R, and

Deff ¼
3

D0s3
X1
n¼1

j�4
n

j2
nR

2 � 2
2s

�

�
3� 4 exp � j2

nD0s
� �

þ exp j2
nD02s

� �
j2
nD0

�
ð10Þ

for diffusion within a reflecting sphere of radius R. One
thus expects to observe

M g; sð Þ
M 0; sð Þ ¼ exp

�
� 2

3
Deffc

2g2s3
�

ð11Þ

for both short and long diffusion times.



12 Specifically, a 10MHz electrodeless discharge was used to

populate the 23S state of the 3He atoms while circularly polarized

1083 nm radiation generated by a laser diode was used to optically

pump the 23S–23P transition. Nuclear polarization levels of order 20%

were generated on a timescale of order 1min using approximately

Fig. 2. Pulse sequence (not to scale): a symmetric bipolar field gradient

is used to induce an abrupt attenuation of an FID. The attenuation

factor Mðg; 2DÞ=Mð0; 2DÞ can be related to an effective diffusion co-

efficient as outlined in Section 2. In the absence of applied field gra-

dients, T �
2 is much longer than any of the timescales referenced here.

This is a constant gradient approach to the measurement of diffusion

coefficients in the sense that field gradients are applied throughout the

entire period of time that spins are allowed to diffuse.
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3. Experimental

The cells used in this work were made entirely from

borosilicate glass [40], and were fabricated by oven-

sealing the two ends of a 4.84(1) cm ID tube with

matching optical flats. The misalignment of the endwalls

with respect to the axis of the cylinder was typically no

greater than 0.2�. A 6mm ID tube attached to the cy-

lindrical wall of each cell provides a means for evacu-
ating and filling the cell. After fabrication, the interior of

each cell was etched with hydrofluoric acid and thor-

oughly rinsed. The cell was then oven-annealed in air for

20min at 560 �C. At this point the cells were attached to

a glass manifold9 and evacuated to pressures below

10�6 Torr while being heated to temperatures of order

250 �C for time periods of several days. The final step in

the cleaning procedure involved filling the cell with ap-
proximately 1.5 Torr of 99.9999mol % 4He and igniting

an intense rf discharge by coupling approximately

200W of microwave power from a commercial micro-

wave oven into the cell. After several minutes, and be-

fore the softening temperature of the glass is reached,

the contents of the cell are evacuated and the procedure

repeated. Contaminants within the cell were detected

and monitored by observing the optical emission spec-
trum of the gas using a CCD-based optical spectrome-

ter.10 Typically, we observe a substantial decrease in the

relative intensity of spectral features not associated with

helium over the first 5–10 iterations of this discharge-

cleaning procedure. Approximately, 15 iterations were

used in the preparation of the particular cells used in the

present work. The final stage in the preparation of each

experimental cell involved filling them with 3He gas11 to
a pressure of 1Torr, and then flame-sealing and an-

nealing the fill-tube, leaving a short stub comprising less

than 0.1% of the total volume. We have found that cells

prepared in this manner consistently yield longitudinal

nuclear relaxation times T1 in excess of 140min at room

temperature, increasing to more than 360min at

)100 �C. The mechanism responsible for this residual

decay is associated with the diffusion of 3He atoms into
the glass matrix [43].

NMR measurements were performed using a custom-

designed whole-body ultra-low-field magnetic resonance

(MR) imaging system that operates at fields as high as

10mT. The particular work described in this manuscript

was carried out at a 3He Larmor frequency of 19.8 kHz,
9 Valves and joints in this system were lubricated with Apiezon H

vacuum grease [41].
10 Typically, we monitor the spectral range from 300 to 1100 nm;

however, we generally find that the range from 500 to 650 nm is

sufficient to characterize the contamination level within the cell.
11 The primary contaminant of concern from the point of view of

nuclear relaxation studies is molecular oxygen [42], which is paramag-

netic. The nominal O2 concentration in the 3He used in this work was

1 ppm.
corresponding to a static magnetic field of 611 lT.
Pulsed field-gradients with maximum amplitudes of

13mT/m were available, although no gradients larger

than �3mT/m were applied as part of this investigation.
A typical experimental sequence involved placing the

cell at the isocentre of the magnet with the axis of the

cell aligned to within 2� of the field, and then using

metastability-exchange optical pumping techniques [44]

to induce high nuclear spin polarizations in the low

pressure gas.12 MR pulse sequences were then initiated

by applying a p=2 tipping pulse and acquiring the re-

sulting free induction decay (FID).13 All FID data were
fit to complex exponentially damped sinusoids in order

to extract signal amplitudes and damping rates.

After a homogenization period d of order 100ms that

is intended to eradicate spatial variations in the initial

magnitude of the transverse magnetization, a bipolar

field gradient is applied perpendicular to the axis of the

cell. In effect this is a gradient-recalled echo sequence

(see Fig. 2). It leads to an abrupt attenuation of the
detected signal that is characterized by determining the

ratio of the FID magnitude immediately before and

after the gradient pulses. Small corrections to this ratio

are made using measured values of T �
2 to account for the
20mW of optical radiation, after which time the discharge was

extinguished.
13 The receive coils used in this application represent a variation of

the design described by Purcell [45]. Four identical, series-connected,

coils were placed symmetrically about the axis of the cell. Two of the

coils were arranged to form a coaxial pair while the other two formed a

coplanar pair. The coils forming each pair were wound in the same

sense, but the coaxial and coplanar pairs were counter-wound with

respect to one another. This arrangement is tightly coupled to signals

originating within the cell, but is virtually immune to disturbance from

external sources.



Fig. 3. The magnitude of an FID acquired from a 3 cm-long 3He-filled

cell. The decay pictured here is accurately exponential, and implies a

residual field gradient of order 1 lT/m in the transverse direction (cf.

Eq. (2)).
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influence of background field gradients. Corrections are
also applied to the diffusion time to account for the finite

slew rate of our gradient amplifiers. To first order these

corrections are given by [13]

s ¼ s0 1

�
þ 3 �þ gð Þ

2s0
� �2

4s20
þ �3

20s30

�1
3

; ð12Þ

where the various symbols are defined in Fig. 2.

Ramping times � and interpulse delays g were individ-
ually determined for each pulse sequence, but were

typically of order 20–100 ls and 250 ls, respectively.
Accurate absolute (static) calibrations of field gradi-

ents were performed by determining the Larmor fre-

quency of a 3 cm-long 3He-filled cell as a function of

gradient current and cell position within the magnet.

Dynamic field gradient amplitudes were subsequently

checked and confirmed to be accurate by integrating the
currents induced in a precision–balanced pair of coils

wound in a gradiometric configuration and placed at

appropriate locations within the magnet. Finally, gra-

dient amplitudes were recorded for individual mea-

surement sequences by monitoring currents produced by

the gradient amplifiers. These amplitudes are reported asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffip
ðg2þ þ g2�Þ=2, although positive and negative excur-

sions (i.e., gþ and g�) were typically balanced at the level

of 1% or better. A similar level of control was achieved

in terms of the balance between the duration of the two

field gradients.
4. Results and discussion

The timescale T �
2 for the decay of the precessing

magnetization in our glass cells is limited by the diffu-

sion of 3He atoms in residual field gradients [37]. These

gradients result from the intrinsic inhomogeneity of the

magnet, as well as the presence of magnetic materials

(such as light fixtures and structural steel) in the labo-

ratory. Internal field gradients produced by susceptibil-

ity differences between the glass cell and the 3He gas are

completely negligible under the low-field conditions
employed in our work. Ultimately, residual field gradi-

ents place a limit on the maximum period of time over

which 3He diffusion can be studied using the particular

techniques we have described. Typically we use low-or-

der shim coils to reduce residual gradients to the level of

about 1 lT/m, beyond which point some care needs to

be taken to ensure that magnetic materials (such as tools

and furniture) located in the vicinity of the magnet re-
main stationary during an experimental sequence. In

Fig. 3 we plot the magnitude of a typical FID acquired

from a 3 cm-long 3He-filled cell after shimming the

magnetic field. The aspect ratio of this particular cell is

such that it is predominately sensitive to transverse field

gradients. Longitudinal components of residual gradi-

ents can be inferred by monitoring the Larmor
frequency as a function of position as the cell is moved

along the axis of the magnet. The fact that we have

observed T �
2 ’s more than an order of magnitude longer

than pictured in this example simply by improving the

field homogeneity provides assurance that the walls of

our glass cells can be treated as if they are perfectly non-

relaxing.
Measurements of gradient-induced FID attenuation

factors were performed as a function of gradient

strength for fixed diffusion times. The experimentally

determined ratio ln½Mðg; 2DÞ=Mð0; 2DÞ� was then plot-

ted as a function of 2c2g2s3=3 to extract Deff (cf. Eq.

(11)). At high gradient amplitudes a clear departure

from a linear relationship, consistent with the onset of

the localization regime [14], could be observed; examples
of such data are presented in reference [46] and the locus

of points demarcating the observed change in behavior

is shown in Fig. 1. The data presented in this manuscript

were selected from the low gradient-amplitude limit,

where a clear linear relationship between ln½Mðg; 2DÞ=
Mð0; 2DÞ� and 2c2g2s3=3 was evident.

In Fig. 4 we plot measured values of Deff as a function

of diffusion time s for a 9 cm-long cylinder containing
3He gas at a pressure of 1.00 Torr and a temperature of

296K. The uncertainty in each point is of order the

symbol size or smaller. Data acquired using a 3 cm-long

cell rather than a 9 cm-long cell yield identical results

within the limits of our experimental accuracy, reaf-

firming the assertion that the walls of our cells can be

treated as ideal ‘reflecting’ boundaries. The circular

symbols in Fig. 4 represent measurements performed
with the cell oriented in the usual configuration as de-

scribed in Section 3. The square symbol represents the

result of a measurement that was made after rotating the

cell by 90� so that its axis was parallel to the applied field



Fig. 4. Measured and calculated (Eq. (9)) values of the effective dif-

fusion coefficient for low-pressure 3He gas diffusing perpendicular to

the axis of a single cylindrical pore. The range of characteristic length

scales ‘s, ‘d, and ‘g explored in this measurement are shown in Fig. 1.

The single data point marked by a square corresponds to a measure-

ment made after rotating the cell by 90� so that its axis was parallel to

the field gradient. This increases the relevant structural length scale ‘s
effectively allowing us to probe time scales that are closer to the free

diffusion limit. Further discussion of this measurement is given in the

text.
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gradient. Under these conditions, the roles of the flat-

and cylindrical-walls of the cell are interchanged. That

is, we expect the FID attenuation for this measurement
to be described by the expression appropriate for infinite

parallel plates. In effect, this manipulation provides a

substantial increase in the relevant value of ‘s, allowing
us to probe values of Deff that are closer to the free

diffusion limit. The abscissa for this point is an effective

diffusion time, as discussed at the end of this Section.

The solid line shown in Fig. 4 represents a fit of Eq.

(9) (i.e., Deff ) to our data based on a v2 minimization of
residuals with the free diffusion coefficient D0 as the only

free parameter. We find D0 ¼ 0:140ð6Þm2/s, where one-

third of the uncertainty in this value arises from the

uncertainty in R and the remainder results from the

accuracy to which individual values of Deff are mea-

sured. This value remains unchanged if the data point

acquired with the cell in the rotated position is removed

from the fit. Our measurement of D0 is in agreement
with the value 0.136(6)m2/s inferred by scaling directly

measured values of D for 3He diffusing in 4He reported

by Bendt [47] to the conditions of our experiment using

the classical high-temperature mass correction factorffiffiffiffiffiffiffiffi
8=7

p
[48]. It is also in agreement with the value

D0 ¼ 0:140ð8Þm2/s obtained by scaling the NMR-based

measurement of Barb�e et al.14 [34] to the conditions of

our experiment using the temperature dependence of the
14 The result reported by Barb�e et al. was obtained via application

of inhomogeneous RF fields rather than pulsed field gradients.
data reported by Bendt [47]. Careful inspection of our
data in the range s6 4ms (i.e., the range where ‘d K ‘s)
shows that while they are consistent with the fit to Eq.

(9), they do lie systematically toward higher values of

Deff . A statistical analysis of this bias relative to the

remainder of the dataset reveals that Eq. (9) underesti-

mates these particular data by no more than 6% at the

85% confidence level. This is an informative constraint

as in principle these data are situated in the intermediate
regime for which the gaussian phase approximation

(upon which Eq. (9) is based) is not necessarily valid. To

the best of our knowledge, this is the only experimental

constraint of this nature that has been reported. We also

note that the quality of the fit shown in Fig. 4 is not

improved by restricting the analysis to diffusion times

s > 4ms.

A natural question to ask is the extent to which
measurements of the time-dependence of spin-echo at-

tenuation factors in the constant gradient limit can

provide useful information regarding the dimensionality

of a particular restriction. Clearly measurements of

spin-echo attenuation factors in the free-diffusion and

motionally averaged regimes only determine the product

b‘4s (cf. Eqs. (1) and (2)). That is, b cannot be determined

from such measurements alone without some a priori
knowledge of ‘s. Conversely, an accurate determination

of ‘s can only be made if the dimensionality of the re-

striction and hence b is known.

It is less obvious from a simple inspection of Eqs. (3),

(5), and (6) (or equivalently Eqs. (8)–(10)) whether or

not measurements of the echo attenuation factor that

span the intermediate regime might provide an experi-

mental signature that is sufficient to resolve the dimen-
sionality of a restriction. Examination of Fig. 5,

however, suggests that making this type of distinction

would be an experimental challenge. The solid curve in

Fig. 5 represents the effective diffusion coefficient for an

infinite reflecting cylinder (Eq. (9)) of radius R normal-

ized to the effective diffusion coefficient for infinite re-

flecting planes (Eq. (8)) separated by a distance

a0 ¼ 2 b2=b1ð Þ
1
4R ¼ 35=4ð Þ

1
4R � 1:72R ð13Þ

and plotted as a function of the measurement period

normalized to R2=D0. The dashed curve corresponds to

the effective diffusion coefficient for an infinite reflecting

cylinder of radius R normalized to the effective diffusion

coefficient for a reflecting spherical restriction (Eq. (10))

of radius

R0 ¼ b2=b3ð Þ
1
4R ¼ 1

4

ffiffiffiffiffi
35

p
=3

1
4R � 1:12R: ð14Þ

The normalization factors appearing in Eqs. (13) and

(14) are motivated by the motionally averaged limits of

the echo-attenuation factors for each geometry (cf. Eq.

(2)). Both of the curves shown in this figure appear to be

universal functions that are independent of the absolute



Fig. 5. A comparison of the effective diffusion coefficients for restricted

diffusion in one, two, and three dimensions. The spherical and slab

geometries result in values of Deff that are maximally different from

those produced by the cylindrical geometry for ‘d � ‘s=3. The fact that

these differences are so small implies that it would be an experimental

challenge to extract detailed information about pore geometry from

measurements of Deff alone. On the other hand, it motivates a practical

method for scaling effective diffusion coefficients obtained from ex-

periments involving simple one-, two- and three-dimensional restric-

tions, as outlined in the text.
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values of D0 and R. The time dependence of the effective

diffusion coefficient clearly depends upon the dimen-

sionality of the restriction. The above comparison sug-

gests that one-, two-, and three-dimensional restrictions

(slab, cylindrical, and spherical geometries, respectively)

lead to effective diffusion coefficients that are maximally

different for ‘d � ‘s=3. The difference between the values

of Deff that one should measure under these conditions,
however, is only of order a few percent.

Clearly, without some a priori knowledge of the na-

ture of a restriction, any determination of a structural

length-scale ‘s from a measurement of the time depen-

dence of Deff in the constant gradient limit is necessarily

imprecise. For example, if in our experiment we did not

know that the confining volume was a cylinder and we

attempted to extract ‘s from measurements of Deff using
Eq. (8) (one-dimensional restriction or slab geometry)

instead of Eq. (9) (two-dimensional restriction or cy-

lindrical geometry) we would have obtained a value that

was too small by a factor of 1:72=2 ¼ 0:86. Likewise if

we used Eq. (10) (three-dimensional restriction or

spherical geometry) instead of Eq. (9) we would have

obtained a value that was too large by a factor of 1.12.

Consequently, it is not possible to decide if two pores
are truly identical from such data without further in-

formation (such as a determination of volume from

measurements of an FID amplitude), even if measure-

ments of the time dependence of Deff in both pores are

identical.
Finally, the comparison of effective diffusion coeffi-
cients shown in Fig. 5 suggests an obvious manner in

which data for Deff acquired with the cell axis aligned

parallel to the field gradient should be compared to

those acquired with the cell axis perpendicular to the

field gradient. For any value of DeffðsÞ measured in the

slab geometry with plate separation a it is possible to

determine an equivalent cylindrical pore of radius R� cf.
Eq. (13) for which Eqs. (8) and (9) yield the same ef-
fective diffusion coefficient, to within the small difference

specified in Fig. 5. Likewise, it is possible to define an

effective diffusion time s� ¼ sðR=R�Þ2 for which a cylin-

der of radius R also yields the same value of Deff . This

procedure was used to determine the effective diffusion

time associated with the data point indicated by the

square symbol in Fig. 4.
5. Conclusion

We have used laser optical pumping techniques in

conjunction with low pressure 3He gas to demonstrate a

novel approach to the study of restricted diffusion

within a single well-defined pore. A steady (or constant)

gradient-recalled echo sequence was used to characterize
diffusion perpendicular to the axis of a cylindrical vol-

ume with non-relaxing walls. This measurement can be

viewed as the extreme limit of a pulsed gradient diffusion

experiment in which the pulse duration is equal to the

diffusion time. Measurements were performed over a

range of time scales such that the characteristic length

scale for diffusion ‘d was varied from approximately

one-tenth to ten times the characteristic structural length
scale ‘s of the pore (‘d=‘s � 0:1 to ‘d=‘s � 10). Data for

the effective diffusion coefficient Deff spanning more than

four decades in magnitude were fit to an analytic solu-

tion of the Bloch–Torrey equation based on the gaussian

phase approximation. This fit provides a highly con-

strained value D0 ¼ 0:140ð6Þ m2/s for the free-diffusion

coefficient of 3He at a temperature and pressure of

296K and 1.00Torr, respectively. This value is in ex-
cellent agreement with previous results obtained with

alternate measurement techniques. The quality of the fit

provides useful information, in that the analytic ex-

pression for Deff accurately reproduces our data even in

the intermediate regime where the validity of the

gaussian phase approximation has not been established.

It also provides useful insight into the difficulties and

limitations associated with attempts to make accurate
determinations of pore geometry from studies of re-

stricted diffusion [49–54].

On one hand our experiments simply represent a two-

dimensional analogue to the pioneering experiments of

Wayne and Cotts [12]; differences between the two ex-

periments are purely geometric. On the other hand we

have been able to circumvent and/or eliminate facets of
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the original work that today might be considered
problematic. With the advantage of hindsight, for ex-

ample, it is evident that Wayne and Cotts’ explored a

range of parameter space that ventured into the locali-

zation regime rather than the desired motional-averag-

ing regime [14]. Our data avoid the localization regime

altogether and venture much further into the motional-

averaging regime. At the same time, through a novel

approach to cell construction and the use of very low
magnetic fields, we have effectively eliminated concerns

that might arise from wall-induced nuclear relaxation.

Finally, through the use of low-pressure gas with a

correspondingly large diffusion coefficient we have been

able to work in a regime where pore geometry can be

controlled and characterized to a high degree of accu-

racy. This aspect of our experiment holds considerable

promise for future investigation, particularly in the
study of pores with complex geometries.
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